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ABSTRACT 

In this note we give a recursive characterization of bounded sets of nodes 
in transfinite trees. 

Thepurpose  of  this note is to give a recursive characterization--suggested byRa-  

bin's  theory of  automata  on infinite trees I l l - - o f  bounded sets of  nodes in trans- 

finite trees. A careful study of  some of  the proofs in this theory shows that a recur- 

rent use is made of  some "pr inc ip le"  concerning subsets of  a tree which have a 

finite intersection with every path in the tree. This principle is made explicit, 

generalized, and independently proved here as Theorem 2, since it is believed that 

it is of  some importance and may have other applications too. 

We begin by some notat ion and definitions. A tree is a partially ordered non-empty 

set T such that the following holds: 

1) For  every x ~ T, the set P ( x ) =  (y: y < x} is a well-ordered set. Its order-  

type g will be called the rank of  x. The set of  all x with rank g will be denoted 

by T~ (T  = t3 T~). 

2) For  every limit g > 0, if  x 6 T~, and y e T~ and P(x) = P(y) then x = y. 

Taking g = 0 in condit ion 2, we get that there is a unique Xo ~ T such that 

P(xo) = ;~; Xo will be called the root of  T. The other members  of  T are nodes 

of  T. 

For  x a node in T we denote by Tx the subtree of  T with root  x; that is: 

T~, = (y: y ~ T, y > x}. T~is  Tx - (x}. A tree is locally finite i f  T~ is finite for  

every g. 

A path in T is a totally ordered (and hence well-ordered) subset of  T, which 

contains the root  of  T. An a-path is a path of  length g. T is an a-tree if it has no 

fl-path for  fl > g, but for  every ~ < g has a path of  length greater than V. 
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Let T be an a-tree, T x _ T, and L a path in T~; L will be called principal if 

it is cofinal with ~; a subset of  L is bounded if it is not cofinal with ~; finally 

L -  will denote L - {x}. 

We now state the following: 

THEORF.M 1. Every locally finite a-tree has an a-path. 

For  non-limit ct the claim is obvious. For  limit ~ this is a standard generalization 

of  K6nig 's  lemma, which may be proved by using any "maximal i ty"  principle 

such as Zorn ' s  lemma or Robinson 's  valuation lemma ([-2], p. 23).* 

DEFINIa'tON. Let T be any a-tree, c~ a limit ordinal, and T '  _ T a set of  nodes 

of  T. We say that T' has the bounded-intersection property (relative to T) if  the 

intersection of  T '  with every or-path of T is bounded. 

For  ~ =o~ the condition states that the intersection of  T '  with every path of  T is 

finite. This obviously does not entail that T '  itself is finite, as may be seen by taking 

for T the "full  binary t ree"  (i.e., the set of  all finite words on {0, 1}, ordered by 

the " in t ia l"  relation: x < y iff there is some z such that xz = y), and for T '  the 

set {0kl ; k > 1}. We want to characterize this property by some more "c losed"  

conditions. 

For  T '  _ T, we define recusively a set of  nodes of  T, the associated-set of  T ' ,  

H(T') ,  as follows: H(T' )  is the least set that contains all nodes x which satisfy the 

following condition: 

(C) For  every principal path L ~ T~, L -  n T '  = ~ or there is node y ~ L -  

such that y ~ H(T') .  

In particular H(T' )  contains all nodes x for which T~- n T '  = ~ .  

THEOREM 2. Let T be a locally finite tree, Xo its root, and T' ~_ T. Then T'  

has the bounded-intersection property if and only if  x o ~ H(T') .  

PROOF. Let T be a locally-finite c~-tree, and T '  a non-empty subset of  T. 

1) Suppose first that Xo CH(T ' ) ( i n  short, H);  we show that T '  does not  have 

the bounded-intersection property. For  x ~ T, a path L ~  Tx will be called accept- 

able if  L is a principal path, L -  n T '  # ~ ,  and L -  n H = ~ .  For  every p < ~. 

we define, by induction, a node yp ~ T and an acceptable path Lp___ Ty, such that 

(1) (yp) is an increasing sequence of  nodes;  

* Or, more simply, the possibility of embedding every proper filter in an ultrafilter. I am 
indebted to the referee for this remark. 
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(2) For  non-limit p, yp ~ T'. 

Thus, the intersection of  T '  with the unique principal path containing all the 

yp will not  be bounded, and the claim will be proved. Since Xo 6 H there is an 

acceptable path L _ T;  we put Yo = Xo, Lo = L. Suppose yp and L o have been 

defined and satisfy conditions (1) and (2) for every p < ft. 

Assume first that fl is a non-limit ordinal; then L~-i  (~ T '  # ~ ,  L~-_I n H 

--- ~ .  Let yp be the first node in L~--1 n T ' ;  yp CH so there is an acceptable path 

L ~ Ty~, take Lp = L. 

For  fl a limit ordinal, let T~ = {Zl , . . . , z ,  } c_ Tp be the set of  all nodes in Tp 

which are contained in principal paths of T. (T~ # ~ as assured in Theorem 1). 

For  each p<fl, Lt, is a principal path so there is a unique i(p), 1 < i(p) < n such 

that z,(p)~ Lp and Lplfl = P(zi~p,) (Lp] fl is the initial subpath of Lp of length fl). 

There is thus some io,1 < io < n, and a sequence of  ordinals (p~) cofinal withfl such 

that Lp, ] fl = P(zio). Since yp~ e Lp~ and the sequence of  nodes (yp) is linearly 

ordered, we conclude that yp~P(zio ) for every p < fl; also (since Zio~Lp~ ) 

Zio6H, so there is an acceptable path L ___ Tz~o. If  we put yp = Zio, Lp =L ,  con- 

ditions (1) and (2) are clearly satisfied and the induction step is complete. 

2) For  every p > 0 we define inductively the following sets of nodes (L is a 

variable ranging over principal paths): 

H a = {x:(L)  ( L _  T x ~ L -  ( 3 T '  = 2~V(qf l )  (3y) (fl < p A y e L -  (3Hp)} 

Clearly H(T')  = k3H a. Suppose now Xo e l l (  = H(T')); then Xo eH~ o, for some 

~o. We show that for every path L ~_ T, L (3 T'  is bounded. Take any a-path 

Lo - T. I f Lo  (3 T' = ~ ,  we are finished. Otherwise, there is some x 1 e L o a n d  

al < ~o, such that xi e H~,. Let L t = Lo ITs, (the restriction of  L o on T~,). I f  

L'~ (3 T' = ~ ,  we are again finished; in the other case, there is some x 2 e L~ and 

~2 < e~ with x 2 e H~2. Continuing this process we get an increasing sequence of  nodes 

Xo < xl < x2 < "" < ,  and a decreasing sequence of  ordinals eo > cq > cr 2 > -.. 

such that x, ~ H~,, so that the process must stop after afinite number of  steps, say 

at ~,. This may happen either because L~ (3 T' = ~ ,  or because a, = 0 so that 

for every principal L _ Tx, , L -  (3 T'  = ~ ,  and again L,-~ (3 T' = ~ ;  in either 

case L o (3 T'  is bounded. 

Q.E.D. 
REMARKS 

1) I f  we replace condition (C) above by the following one: 

(C') T-~ (3 T' = ~ or there is a node y e T~-such that y ~ H ( T ' ) - - t h e n  one side 
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of the equivalence in Theorem 2 remains true; namely: if  T'  has the bounded- 

intersection property then Xo e H(T'). 
The proof goes as follows: Suppose Xor then Txo ~ T' ~ ~5 and T;o n H 

= ~ .  Define inductively an increasing sequence of  nodes (yp)p<~, in which 

Yp+I e T' (and by assumption, ypr as follows: Y0 = Xo; suppose yp has been 

defined; yp r  so Ty~ n T' ~ E5 ; take as Yp+l any element in this set; if yp has 

been defined for every p < ~, fl a limit ordinal, then take as yp the least upper 

bound of  (yp). The sequence (yp) defines thus a unique L for which L n T' is 

unbounded. 

The converse however, is obviously no more true as may be seen by taking for 

T any locally finite co-tree (which is not linearly ordered), and for T' any co-path 

in T. 

2) On the other hand, replacing (C) by 

(C") T~-n T = ~5 or for every principal L ~ Tx there is some y 6 L -  such 

that T~- c~ T'  --- JZ5 

reverses the situation since, clearly, if x0 6 H then T' has the bounded-intersection 

property, while the converse is again false, as may be seen by the example given 

after Theorem i, in which T' has the bounded-intersection property, but Xo r H. 
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